Offline-Enhanced Reduced Basis Method through adaptive construction of the Surrogate Parameter Domain
نویسندگان
چکیده
The Reduced Basis Method (RBM) is a popular certified model reduction approach for solving parametrized partial differential equations. One critical stage of the offline portion of the algorithm is a greedy algorithm, requiring maximization of an error estimate over parameter space. In practice this maximization is usually performed by replacing the parameter domain continuum with a discrete ”training” set. When the dimension of parameter space is large, it is necessary to significantly increase the size of this training set in order to effectively search parameter space. Large training sets diminish the attractiveness of RBM algorithms since this proportionally increases the cost of the offline phase. In this work we propose novel strategies for offline RBM algorithms that mitigate the computational difficulty of maximizing error estimates over a training set. The main idea is to identify a subset of the training set, a ”surrogate parameter domain” (SPD), on which to perform greedy algorithms. The SPD’s we construct are much smaller in size than the full training set, yet our examples suggest that they are accurate enough to represent the solution manifold of interest at the current offline RBM iteration. We propose two algorithms to construct the SPD: Our first algorithm, the Successive Maximization Method (SMM) method, is inspired by inverse transform sampling for non-standard univariate probability distributions. The second constructs an SPD by identifying pivots in the Cholesky Decomposition of an approximate error correlation matrix. We demonstrate the algorithm through numerical experiments, showing that the algorithm is capable of accelerating offline RBM procedures without degrading accuracy, assuming that the solution manifold has low Kolmogorov width.
منابع مشابه
An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations
We present a new “hp” parameter multi-domain certified reduced basis method for rapid and reliable online evaluation of functional outputs associated with parametrized elliptic partial differential equations. We propose a new procedure and attendant theoretical foundations for adaptive partition of the parameter domain into parameter subdomains (“h”-refinement); subsequently, we construct indiv...
متن کاملData-Driven Combined State and Parameter Reduction for Extreme-Scale Inverse Problems
In this contribution we present an accelerated optimization-based approach for combined state and parameter reduction of a parametrized linear control system which is then used as a surrogate model in a Bayesian inverse setting. Following the basic ideas presented in [Lieberman, Willcox, Ghattas. Parameter and state model reduction for large-scale statistical inverse settings, SIAM J. Sci. Comp...
متن کاملReduced basis methods with adaptive snapshot computations
We use asymptotically optimal adaptive numerical methods (here specifically a wavelet scheme) for snapshot computations within the offline phase of the Reduced Basis Method (RBM). The resulting discretizations for each snapshot (i.e., parameter-dependent) do not permit the standard RB ‘truth space’, but allow for error estimation of the RB approximation with respect to the exact solution of the...
متن کاملA Certified Reduced Basis Method for Parametrized Elliptic Optimal Control Problems∗
In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linea...
متن کاملOn the use of ANOVA expansions in reduced basis methods for high-dimensional parametric partial differential equations
We propose two different improvements of reduced basis (RB) methods to enable the efficient and accurate evaluation of an output functional based on the numerical solution of parametrized partial differential equations with a possibly high-dimensional parameter space. The element that combines these two techniques is that they both utilize ANOVA expansions to achieve the improvements. The first...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017